
Finite Difference Method

The finite difference method is a means of solving differential equations numerically by
using a finite value for x rather than x 0.

The slope dT/dx can be approximated at the point xi in several ways. The forward
differencing technique uses
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The backward differencing technique uses

dT

dx
≈

Ti − Ti−1

∆x

The central differencing technique uses
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Approximations of differential equations of order 2 or higher follow the same general
scheme, using the difference between the forward and backward differences to calculate
the curvature at a point:

d2T

dt2 =
d

dT
dx

 
 

 
 

dx
≈

Ti+1 − Ti

∆x
 
 

 
 −

Ti −Ti−1

∆x
 
 

 
 

∆x
=

Ti +1 −2Ti + Ti−1

∆x2



So, this works fine for changes in space, but what about changes in time? For central
differencing we can write
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where Tto indicates the temperature at the present time step and Tt+ indicates the
temperature at the next (future) time step. Thus, the diffusion equation is written
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and the solution for T at the next (future) time step is

Ti
t+ = Ti

to +
∆t

∆x2 Ti+1
to − 2Ti

t o + Ti−1
to( )

The term
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in the above equation is the Fourier cell constant and must be smaller than 0.25 for the
equation to remain stable. You must check your finite-element model for accuracy by
comparing it to an analytical solution or reducing the time step and seeing that the result
does not change.



There are four methods commonly used in finite-difference calculations:

The alternating-direction implicit method divides each time step in two: one half timestep
that is explicit in one direction and implicit in the other and a second half timestep that is
the opposite.


